3.309 \(\int \cot (e+f x) (a+b \tan ^2(e+f x))^{3/2} \, dx\)

Optimal. Leaf size=95 \[ -\frac{a^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan ^2(e+f x)}}{\sqrt{a}}\right )}{f}+\frac{b \sqrt{a+b \tan ^2(e+f x)}}{f}+\frac{(a-b)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan ^2(e+f x)}}{\sqrt{a-b}}\right )}{f} \]

[Out]

-((a^(3/2)*ArcTanh[Sqrt[a + b*Tan[e + f*x]^2]/Sqrt[a]])/f) + ((a - b)^(3/2)*ArcTanh[Sqrt[a + b*Tan[e + f*x]^2]
/Sqrt[a - b]])/f + (b*Sqrt[a + b*Tan[e + f*x]^2])/f

________________________________________________________________________________________

Rubi [A]  time = 0.131187, antiderivative size = 95, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 6, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.261, Rules used = {3670, 446, 84, 156, 63, 208} \[ -\frac{a^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan ^2(e+f x)}}{\sqrt{a}}\right )}{f}+\frac{b \sqrt{a+b \tan ^2(e+f x)}}{f}+\frac{(a-b)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan ^2(e+f x)}}{\sqrt{a-b}}\right )}{f} \]

Antiderivative was successfully verified.

[In]

Int[Cot[e + f*x]*(a + b*Tan[e + f*x]^2)^(3/2),x]

[Out]

-((a^(3/2)*ArcTanh[Sqrt[a + b*Tan[e + f*x]^2]/Sqrt[a]])/f) + ((a - b)^(3/2)*ArcTanh[Sqrt[a + b*Tan[e + f*x]^2]
/Sqrt[a - b]])/f + (b*Sqrt[a + b*Tan[e + f*x]^2])/f

Rule 3670

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[(c*ff)/f, Subst[Int[(((d*ff*x)/c)^m*(a + b*(ff*x)^n)^p)/(c^
2 + ff^2*x^2), x], x, (c*Tan[e + f*x])/ff], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 84

Int[((e_.) + (f_.)*(x_))^(p_)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Simp[(f*(e + f*x)^(p -
 1))/(b*d*(p - 1)), x] + Dist[1/(b*d), Int[((b*d*e^2 - a*c*f^2 + f*(2*b*d*e - b*c*f - a*d*f)*x)*(e + f*x)^(p -
 2))/((a + b*x)*(c + d*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 1]

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \cot (e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\left (a+b x^2\right )^{3/2}}{x \left (1+x^2\right )} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac{\operatorname{Subst}\left (\int \frac{(a+b x)^{3/2}}{x (1+x)} \, dx,x,\tan ^2(e+f x)\right )}{2 f}\\ &=\frac{b \sqrt{a+b \tan ^2(e+f x)}}{f}+\frac{\operatorname{Subst}\left (\int \frac{a^2+(2 a-b) b x}{x (1+x) \sqrt{a+b x}} \, dx,x,\tan ^2(e+f x)\right )}{2 f}\\ &=\frac{b \sqrt{a+b \tan ^2(e+f x)}}{f}+\frac{a^2 \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x}} \, dx,x,\tan ^2(e+f x)\right )}{2 f}-\frac{(a-b)^2 \operatorname{Subst}\left (\int \frac{1}{(1+x) \sqrt{a+b x}} \, dx,x,\tan ^2(e+f x)\right )}{2 f}\\ &=\frac{b \sqrt{a+b \tan ^2(e+f x)}}{f}+\frac{a^2 \operatorname{Subst}\left (\int \frac{1}{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \tan ^2(e+f x)}\right )}{b f}-\frac{(a-b)^2 \operatorname{Subst}\left (\int \frac{1}{1-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \tan ^2(e+f x)}\right )}{b f}\\ &=-\frac{a^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan ^2(e+f x)}}{\sqrt{a}}\right )}{f}+\frac{(a-b)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan ^2(e+f x)}}{\sqrt{a-b}}\right )}{f}+\frac{b \sqrt{a+b \tan ^2(e+f x)}}{f}\\ \end{align*}

Mathematica [A]  time = 0.250656, size = 90, normalized size = 0.95 \[ \frac{a^{3/2} \left (-\tanh ^{-1}\left (\frac{\sqrt{a+b \tan ^2(e+f x)}}{\sqrt{a}}\right )\right )+b \sqrt{a+b \tan ^2(e+f x)}+(a-b)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan ^2(e+f x)}}{\sqrt{a-b}}\right )}{f} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[e + f*x]*(a + b*Tan[e + f*x]^2)^(3/2),x]

[Out]

(-(a^(3/2)*ArcTanh[Sqrt[a + b*Tan[e + f*x]^2]/Sqrt[a]]) + (a - b)^(3/2)*ArcTanh[Sqrt[a + b*Tan[e + f*x]^2]/Sqr
t[a - b]] + b*Sqrt[a + b*Tan[e + f*x]^2])/f

________________________________________________________________________________________

Maple [B]  time = 0.186, size = 1765, normalized size = 18.6 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(f*x+e)*(a+b*tan(f*x+e)^2)^(3/2),x)

[Out]

-1/4/f/a^(5/2)/(a-b)^(1/2)*(cos(f*x+e)-1)^3*(2*ln(4*cos(f*x+e)*(a-b)^(1/2)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/
(cos(f*x+e)+1)^2)^(1/2)+4*cos(f*x+e)*a-4*b*cos(f*x+e)+4*(a-b)^(1/2)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*
x+e)+1)^2)^(1/2))*cos(f*x+e)*a^(9/2)-4*ln(4*cos(f*x+e)*(a-b)^(1/2)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x
+e)+1)^2)^(1/2)+4*cos(f*x+e)*a-4*b*cos(f*x+e)+4*(a-b)^(1/2)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^
2)^(1/2))*cos(f*x+e)*a^(7/2)*b+2*ln(4*cos(f*x+e)*(a-b)^(1/2)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)
^2)^(1/2)+4*cos(f*x+e)*a-4*b*cos(f*x+e)+4*(a-b)^(1/2)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/
2))*cos(f*x+e)*a^(5/2)*b^2+2*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*cos(f*x+e)*(a-b)^(1/2)
*a^(5/2)*b+2*b*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(5/2)*(a-b)^(1/2)+ln(-2/a^(1/2)*(c
os(f*x+e)-1)*(cos(f*x+e)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)-cos(f*x+e)*a+b*cos
(f*x+e)+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+b)/sin(f*x+e)^2)*cos(f*x+e)*(a-b)^(
1/2)*a^4-3*ln(-2/a^(1/2)*(cos(f*x+e)-1)*(cos(f*x+e)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)
*a^(1/2)-cos(f*x+e)*a+b*cos(f*x+e)+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+b)/sin(f
*x+e)^2)*cos(f*x+e)*(a-b)^(1/2)*a^3*b+6*ln(-2/a^(1/2)*(cos(f*x+e)-1)*(cos(f*x+e)*((a*cos(f*x+e)^2-cos(f*x+e)^2
*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)-cos(f*x+e)*a+b*cos(f*x+e)+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)
+1)^2)^(1/2)*a^(1/2)+b)/sin(f*x+e)^2)*cos(f*x+e)*(a-b)^(1/2)*a^2*b^2-3*ln(-2/a^(1/2)*(cos(f*x+e)-1)*(cos(f*x+e
)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)-cos(f*x+e)*a+b*cos(f*x+e)+((a*cos(f*x+e)^
2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+b)/sin(f*x+e)^2)*cos(f*x+e)*(a-b)^(1/2)*a*b^3-ln(-4*(cos(f
*x+e)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+cos(f*x+e)*a-b*cos(f*x+e)+((a*cos(f*x
+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+b)/(cos(f*x+e)-1))*cos(f*x+e)*(a-b)^(1/2)*a^4+3*ln(-4/
a^(1/2)*(cos(f*x+e)-1)*(cos(f*x+e)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)-cos(f*x+
e)*a+b*cos(f*x+e)+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+b)/sin(f*x+e)^2)*cos(f*x+
e)*(a-b)^(1/2)*a^3*b-6*ln(-4/a^(1/2)*(cos(f*x+e)-1)*(cos(f*x+e)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)
+1)^2)^(1/2)*a^(1/2)-cos(f*x+e)*a+b*cos(f*x+e)+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1
/2)+b)/sin(f*x+e)^2)*cos(f*x+e)*(a-b)^(1/2)*a^2*b^2+3*ln(-4/a^(1/2)*(cos(f*x+e)-1)*(cos(f*x+e)*((a*cos(f*x+e)^
2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)-cos(f*x+e)*a+b*cos(f*x+e)+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+
b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+b)/sin(f*x+e)^2)*cos(f*x+e)*(a-b)^(1/2)*a*b^3)*cos(f*x+e)^2*((a*cos(f*x+e)^
2-cos(f*x+e)^2*b+b)/cos(f*x+e)^2)^(3/2)*4^(1/2)/sin(f*x+e)^6/((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)
^2)^(3/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \tan \left (f x + e\right )^{2} + a\right )}^{\frac{3}{2}} \cot \left (f x + e\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)*(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*tan(f*x + e)^2 + a)^(3/2)*cot(f*x + e), x)

________________________________________________________________________________________

Fricas [A]  time = 6.5598, size = 1481, normalized size = 15.59 \begin{align*} \left [-\frac{{\left (a - b\right )}^{\frac{3}{2}} \log \left (-\frac{b^{2} \tan \left (f x + e\right )^{4} + 2 \,{\left (4 \, a b - 3 \, b^{2}\right )} \tan \left (f x + e\right )^{2} - 4 \,{\left (b \tan \left (f x + e\right )^{2} + 2 \, a - b\right )} \sqrt{b \tan \left (f x + e\right )^{2} + a} \sqrt{a - b} + 8 \, a^{2} - 8 \, a b + b^{2}}{\tan \left (f x + e\right )^{4} + 2 \, \tan \left (f x + e\right )^{2} + 1}\right ) - 2 \, a^{\frac{3}{2}} \log \left (\frac{b \tan \left (f x + e\right )^{2} - 2 \, \sqrt{b \tan \left (f x + e\right )^{2} + a} \sqrt{a} + 2 \, a}{\tan \left (f x + e\right )^{2}}\right ) - 4 \, \sqrt{b \tan \left (f x + e\right )^{2} + a} b}{4 \, f}, \frac{4 \, \sqrt{-a} a \arctan \left (\frac{\sqrt{b \tan \left (f x + e\right )^{2} + a} \sqrt{-a}}{a}\right ) -{\left (a - b\right )}^{\frac{3}{2}} \log \left (-\frac{b^{2} \tan \left (f x + e\right )^{4} + 2 \,{\left (4 \, a b - 3 \, b^{2}\right )} \tan \left (f x + e\right )^{2} - 4 \,{\left (b \tan \left (f x + e\right )^{2} + 2 \, a - b\right )} \sqrt{b \tan \left (f x + e\right )^{2} + a} \sqrt{a - b} + 8 \, a^{2} - 8 \, a b + b^{2}}{\tan \left (f x + e\right )^{4} + 2 \, \tan \left (f x + e\right )^{2} + 1}\right ) + 4 \, \sqrt{b \tan \left (f x + e\right )^{2} + a} b}{4 \, f}, \frac{{\left (-a + b\right )}^{\frac{3}{2}} \arctan \left (\frac{2 \, \sqrt{b \tan \left (f x + e\right )^{2} + a} \sqrt{-a + b}}{b \tan \left (f x + e\right )^{2} + 2 \, a - b}\right ) + a^{\frac{3}{2}} \log \left (\frac{b \tan \left (f x + e\right )^{2} - 2 \, \sqrt{b \tan \left (f x + e\right )^{2} + a} \sqrt{a} + 2 \, a}{\tan \left (f x + e\right )^{2}}\right ) + 2 \, \sqrt{b \tan \left (f x + e\right )^{2} + a} b}{2 \, f}, \frac{2 \, \sqrt{-a} a \arctan \left (\frac{\sqrt{b \tan \left (f x + e\right )^{2} + a} \sqrt{-a}}{a}\right ) +{\left (-a + b\right )}^{\frac{3}{2}} \arctan \left (\frac{2 \, \sqrt{b \tan \left (f x + e\right )^{2} + a} \sqrt{-a + b}}{b \tan \left (f x + e\right )^{2} + 2 \, a - b}\right ) + 2 \, \sqrt{b \tan \left (f x + e\right )^{2} + a} b}{2 \, f}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)*(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

[-1/4*((a - b)^(3/2)*log(-(b^2*tan(f*x + e)^4 + 2*(4*a*b - 3*b^2)*tan(f*x + e)^2 - 4*(b*tan(f*x + e)^2 + 2*a -
 b)*sqrt(b*tan(f*x + e)^2 + a)*sqrt(a - b) + 8*a^2 - 8*a*b + b^2)/(tan(f*x + e)^4 + 2*tan(f*x + e)^2 + 1)) - 2
*a^(3/2)*log((b*tan(f*x + e)^2 - 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(a) + 2*a)/tan(f*x + e)^2) - 4*sqrt(b*tan(f*
x + e)^2 + a)*b)/f, 1/4*(4*sqrt(-a)*a*arctan(sqrt(b*tan(f*x + e)^2 + a)*sqrt(-a)/a) - (a - b)^(3/2)*log(-(b^2*
tan(f*x + e)^4 + 2*(4*a*b - 3*b^2)*tan(f*x + e)^2 - 4*(b*tan(f*x + e)^2 + 2*a - b)*sqrt(b*tan(f*x + e)^2 + a)*
sqrt(a - b) + 8*a^2 - 8*a*b + b^2)/(tan(f*x + e)^4 + 2*tan(f*x + e)^2 + 1)) + 4*sqrt(b*tan(f*x + e)^2 + a)*b)/
f, 1/2*((-a + b)^(3/2)*arctan(2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(-a + b)/(b*tan(f*x + e)^2 + 2*a - b)) + a^(3/2
)*log((b*tan(f*x + e)^2 - 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(a) + 2*a)/tan(f*x + e)^2) + 2*sqrt(b*tan(f*x + e)^
2 + a)*b)/f, 1/2*(2*sqrt(-a)*a*arctan(sqrt(b*tan(f*x + e)^2 + a)*sqrt(-a)/a) + (-a + b)^(3/2)*arctan(2*sqrt(b*
tan(f*x + e)^2 + a)*sqrt(-a + b)/(b*tan(f*x + e)^2 + 2*a - b)) + 2*sqrt(b*tan(f*x + e)^2 + a)*b)/f]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (a + b \tan ^{2}{\left (e + f x \right )}\right )^{\frac{3}{2}} \cot{\left (e + f x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)*(a+b*tan(f*x+e)**2)**(3/2),x)

[Out]

Integral((a + b*tan(e + f*x)**2)**(3/2)*cot(e + f*x), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \tan \left (f x + e\right )^{2} + a\right )}^{\frac{3}{2}} \cot \left (f x + e\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)*(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

integrate((b*tan(f*x + e)^2 + a)^(3/2)*cot(f*x + e), x)